# Chapter 6

**Basic Groundwater Concepts** 

# Chapter 6 Basic Groundwater Concepts

This chapter presents general concepts relating to the origin, occurrence, movement, quantity, and quality of groundwater. The concepts will be useful in providing the nontechnical reader with a basic understanding of groundwater. For more experienced readers, many topics are discussed specifically as they apply to California or as the terms are used in this report. A glossary of terms is included at the end of this report. For additional reading on basic groundwater concepts see *Basic Ground-Water Hydrology* (Heath 1983).

# **Origin of Groundwater**

Groundwater is a component of the hydrologic cycle (Figure 11), which describes locations where water may occur and the processes by which it moves or is transformed to a different phase. In simple terms, water or one of its forms—water vapor and ice—can be found at the earth's surface, in the atmosphere, or beneath the earth's surface. The hydrologic cycle is a continuum, with no beginning or end; however, it is often thought of as beginning in the oceans. Water evaporates from a surface water source such as an ocean, lake, or through transpiration from plants. The water vapor may move over the land and condense to form clouds, allowing the water to return to the earth's surface as precipitation (rain or snow). Some of the snow will end up in polar ice caps or in glaciers. Most of the rain and snowmelt will either become overland flow in channels or will infiltrate into the subsurface. Some of the infiltrated water will be transpired by plants and returned to the atmosphere, while some will cling to particles surrounding the pore spaces in the subsurface, remaining in the vadose (unsaturated) zone. The rest of the infiltrated water will move gradually under the influence of gravity into the saturated zone of the subsurface, becoming groundwater. From here, groundwater will flow toward points of discharge such as rivers, lakes, or the ocean to begin the cycle anew. This flow from recharge areas to discharge areas describes the groundwater portion of the hydrologic cycle.

The importance of groundwater in the hydrologic cycle is illustrated by considering the distribution of the world's water supply. More than 97 percent of all earth's water occurs as saline water in the oceans (Fetter 1988). Of the world's fresh water, almost 75 percent is in polar ice caps and glaciers, which leaves a very small amount of fresh water readily available for use. Groundwater accounts for nearly all of the remaining fresh water (Alley and others 1999). All of the fresh water stored in the world's rivers and lakes accounts for less than 1 percent of the world's fresh water.

#### Occurrence of Groundwater

Groundwater is the water occurring beneath the earth's surface that completely fills (saturates) the void space of rocks or sediment. Given that all rock has some open space (voids), groundwater can be found underlying nearly any location in the State. Several key properties help determine whether the subsurface environment will provide a significant, usable groundwater resource. Most of California's groundwater occurs in material deposited by streams, called alluvium. Alluvium consists of coarse deposits, such as sand and gravel, and finer-grained deposits such as clay and silt. The coarse and fine materials are usually coalesced in thin lenses and beds in an alluvial environment. In this environment, coarse materials such as sand and gravel deposits usually provide the best source of water and are termed aquifers; whereas, the finer-grained clay and silt deposits are relatively poor sources of water and are referred to as aquitards. California's groundwater basins usually include one or a series of alluvial aquifers with intermingled aquitards. Less frequently, groundwater basins include aquifers composed of unconsolidated marine sediments that have been flushed by fresh water. We include the marine-deposited aquifers in the discussion of alluvial aquifers in this bulletin.

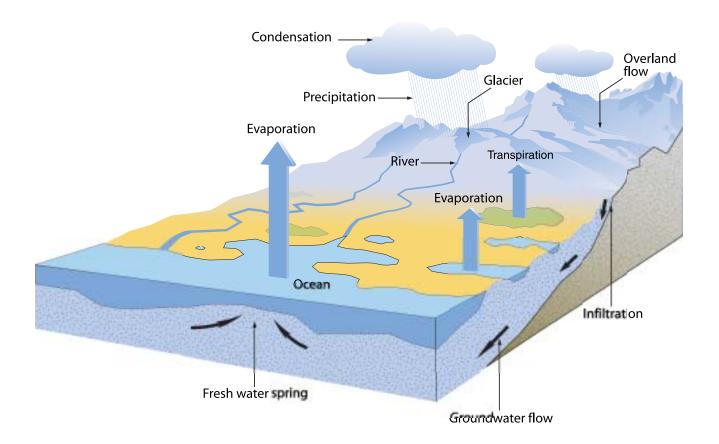



Figure 11 The Hydrologic Cycle

Although alluvial aquifers are most common in California, other groundwater development occurs in fractured crystalline rocks, fractured volcanics, and limestones. For this report, these nonalluvial areas that provide groundwater are referred to as "groundwater source areas," while the alluvial aquifers are called groundwater basins. Each of these concepts is discussed more fully below.

#### **Groundwater and Surface Water Interconnection**

Groundwater and surface water bodies are connected physically in the hydrologic cycle. For example, at some locations or at certain times of the year, water will infiltrate the bed of a stream to recharge groundwater. At other times or places, groundwater may discharge, contributing to the base flow of a stream. Changes in either the surface water or groundwater system will affect the other, so effective management requires consideration of both resources. Although this physical interconnection is well understood in general terms, details of the physical and chemical relationships are the topic of considerable research.

These details are the subject of significant recent investigations into the hyporheic zone, the zone of sand and gravel that forms the channel of a stream. As surface water flows downstream it may enter the gravels in the

#### Box N One Resource, Two Systems of Law

In California, two distinct legal regimes govern the appropriation of surface water and subterranean streams, and percolating groundwater. The California Water Code requires that water users taking water for beneficial use from surface watercourses and "subterranean streams flowing through known and definite channels" obtain water right permits or licenses from the State Water Resources Control Board (SWRCB) (Water Code § 1200 et seg.). Groundwater classified as percolating groundwater is not subject to the Water Code provisions concerning the appropriation of water, and a water user can take percolating groundwater without having a State-issued water right permit or license. Current Water Code section 1200 is derived from a provision in the Water Commission Act of 1913, which became effective on December 19, 1914.

The SWRCB developed a test to identify groundwater that is in a subterranean stream flowing through a known and definite channel and is therefore subject to the SWRCB's permitting authority. The physical conditions that must be present in a subterranean stream flowing in a known and definite channel are: (1) a subsurface channel must be present; (2) the channel must have relatively impermeable bed and banks; (3) the course of the channel must be known or capable of being determined by reasonable inference; and (4) groundwater must be flowing in the channel. Whether groundwater is subject to the SWRCB's permitting authority under this test is a factual determination. Water that does not fit this test is "percolating groundwater" and is not subject to the SWRCB's permitting authority.

The SWRCB has issued decisions that find that groundwater under the following streams constitutes a "subterranean stream flowing through known and definite channels" and is therefore subject to the SWRCB's permitting authority (Murphey 2003 pers com):

Los Angeles River in Los Angeles County Sheep Creek in San Bernardino County Mission Basin of the San Luis Rey River in San Diego County Bonsall Basin of the San Luis Rey River in San Diego County Pala Basin of the San Luis Rey River in San Diego County Carmel River in Monterey County Garrapata Creek in Monterey County Big Sur River in Monterey County Russian River Chorro Creek in San Luis Obispo County Morro Creek in San Luis Obispo County North Fork Gualala River in Mendocino County

Contact the SWRCB, Division of Water Rights for specific stream reaches and other details of these decisions.

hyporheic zone, mix with groundwater, and re-enter the surface water in the stream channel. The effects of this interchange between surface water and groundwater can change the dissolved oxygen content, temperature, and mineral concentrations of the water. These changes may have a significant effect on aquatic and riparian biota.

Significantly, the physical and chemical interconnection of groundwater and surface water is not well represented in California's water rights system (see Box N "One Resource, Two Systems of Law").

# **Physical Properties That Affect Groundwater**

The degree to which a body of rock or sediments will function as a groundwater resource depends on many properties, some of which are discussed here. Two of the more important physical properties to consider are porosity and hydraulic conductivity. Transmissivity is another important concept to understand when considering an aquifer's overall ability to yield significant groundwater. Throughout the discussion of these properties, keep in mind that sediment size in alluvial environments can change significantly over short distances, with a corresponding change in physical properties. Thus, while these properties are often presented as average values for a large area, one might encounter different conditions on a more localized level. Determination of these properties for a given aquifer may be based on lithologic or geophysical observations, laboratory testing, or aquifer tests with varying degrees of accuracy.

# **Porosity**

The ratio of voids in a rock or sediment to the total volume of material is referred to as porosity and is a measure of the amount of groundwater that may be stored in the material. Figure 12 gives several examples of the types of porosity encountered in sediments and rocks. Porosity is usually expressed as a percentage and can be classified as either primary or secondary. Primary porosity refers to the voids present when the sediment or rock was initially formed. Secondary porosity refers to voids formed through fracturing or weathering of a rock or sediment after it was formed. In sediments, porosity is a function of the uniformity of grain size (sorting) and shape. Finer-grained sediments tend to have a higher porosity than coarser sediments because the finer-grained sediments generally have greater uniformity of size and because of the tabular shape and surface chemistry properties of clay particles. In crystalline rocks, porosity becomes greater with a higher degree of fracturing or weathering. As alluvial sediments become consolidated, primary porosity generally decreases due to compaction and cementation, and secondary porosity may increase as the consolidated rock is subjected to stresses that cause fracturing.

Porosity does not tell the entire story about the availability of groundwater in the subsurface. The pore spaces must also interconnect and be large enough so that water can move through the ground to be extracted from a well or discharged to a water body. The term "effective porosity" refers to the degree of interconnectedness of pore spaces. For coarse sediments, such as the sand and gravel encountered in California's alluvial groundwater basins, the effective porosity is often nearly equal to the overall porosity. In finer sediments, effective porosity may be low due to water that is tightly held in small pores. Effective porosity is generally very low in crystalline rocks that are not highly fractured or weathered.

While porosity measures the total amount of water that may be contained in void spaces, there are two related properties that are important to consider: specific yield and specific retention. Specific yield is the fractional amount of water that would drain freely from rocks or sediments due to gravity and describes the portion of the groundwater that could actually be available for extraction. The portion of groundwater that is retained either as a film on grains or in small pore spaces is called specific retention. Specific yield and specific retention of the aquifer material together equal porosity. Specific retention increases with decreasing grain size. Table 7 shows that clays, while having among the highest porosities, make poor sources of groundwater because they yield very little water. Sand and gravel, having much lower porosity than clay, make excellent sources of groundwater because of the high specific yield, which allows the groundwater to flow to wells. Rocks such as limestone and basalt yield significant quantities of groundwater if they are well-weathered and highly fractured.



Figure 12 Examples of porosity in sediments and rocks

Table 7 Porosity (in percent) of soil and rock types

| Material                     | Porosity | Specific yield | Specific retention |
|------------------------------|----------|----------------|--------------------|
| Clay                         | 50       | 2              | 48                 |
| Sand                         | 25       | 22             | 2                  |
| Gravel                       | 20       | 19             | 1                  |
| Limestone                    | 20       | 18             | 2                  |
| Sandstone (semiconsolidated) | 11       | 6              | 5                  |
| Granite                      | 0.1      | 0.09           | 0.01               |
| Basalt (young)               | 11       | 8              | 3                  |

Modified from Heath (1983)

# Hydraulic Conductivity

Another major property related to understanding water movement in the subsurface is hydraulic conductivity. Hydraulic conductivity is a measure of a rock or sediment's ability to transmit water and is often used interchangeably with the term permeability. The size, shape, and interconnectedness of pore spaces affect hydraulic conductivity (Driscoll 1986).

Hydraulic conductivity is usually expressed in units of length/time: feet/day, meters/day, or gallons/day/ square-foot. Hydraulic conductivity values in rocks range over many orders of magnitude from a low permeability unfractured crystalline rock at about 10<sup>-8</sup> feet/day to a highly permeable well-sorted gravel at greater than 10<sup>4</sup> feet/day (Heath 1983). Clays have low permeability, ranging from about 10<sup>-3</sup> to 10<sup>-7</sup> feet/day (Heath 1983). Figure 13 shows hydraulic conductivity ranges of selected rocks and sediments.

### **Transmissivity**

Transmissivity is a measure of the aquifer's ability to transmit groundwater through its entire saturated thickness and relates closely to the potential yield of wells. Transmissivity is defined as the product of the hydraulic conductivity and the saturated thickness of the aquifer. It is an important property to understand because a given area could have a high value of hydraulic conductivity but a small saturated thickness, resulting in limited overall yield of groundwater.

#### **Aquifer**

An aquifer is a body of rock or sediment that yields significant amounts of groundwater to wells or springs. In many definitions, the word "significant" is replaced by "economic." Of course, either term is a matter of perspective, which has led to disagreement about what constitutes an aquifer. As discussed previously, coarse-grained sediments such as sands and gravels deposited in alluvial or marine environments tend to function as the primary aquifers in California. These alluvial aquifers are the focus of this report. Other aquifers, such as those found in volcanics, igneous intrusive rocks, and carbonate rocks are described briefly in the section Groundwater Source Areas.

#### Aquitard

An aquitard is a body of rock or sediment that is typically capable of storing groundwater but does not yield it in significant or economic quantities. Fine-grained sediments with low hydraulic conductivity, such as clays and silts, often function as aquitards. Aquitards are often referred to as confining layers because they retard the vertical movement of groundwater and under the right hydrogeologic conditions confine groundwater that is under pressure. Aquitards are capable of transmitting enough water to allow some flow between adjacent aquifers, and depending on the magnitude of this transfer of water, may be referred to as leaky aquitards.

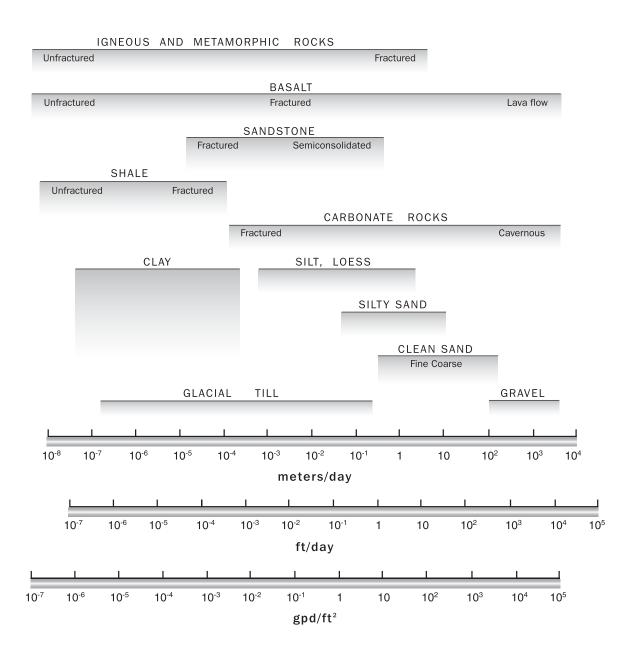



Figure 13 Hydraulic conductivity ranges of selected rocks and sediments

# **Unconfined and Confined Aquifers**

In most depositional environments, coarser-grained deposits are interbedded with finer-grained deposits creating a series of aquifers and aquitards. When a saturated aquifer is bounded on top by an aquitard (also known as a confining layer), the aquifer is called a confined aquifer (Figure 14). Under these conditions, the water is under pressure so that it will rise above the top of the aquifer if the aquitard is penetrated by a well. The elevation to which the water rises is known as the potentiometric surface. Where an aquifer is not bounded on top by an aguitard, the aguifer is said to be unconfined. In an unconfined aguifer, the pressure on the top surface of the groundwater is equal to that of the atmosphere. This surface is known as the water table, so unconfined aquifers are often referred to as water table aquifers. The arrangement of aquifers and aguitards in the subsurface is referred to as hydrostratigraphy.

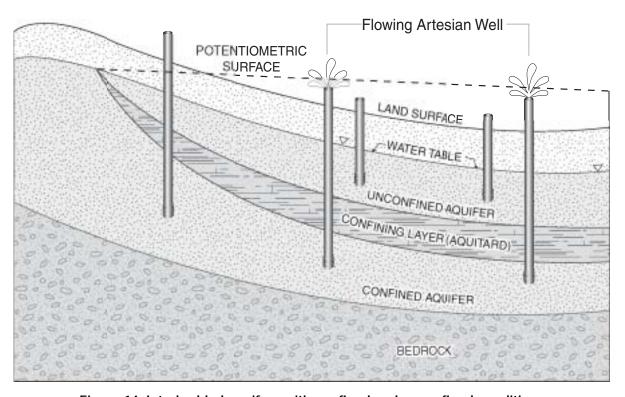



Figure 14 Interbedded aquifers with confined and unconfined conditions

With the notable exception of the Corcoran Clay of the Tulare Formation in the San Joaquin Valley and the aquitard in West Coast Basin in Los Angeles County, there are no clearly recognizable regional aquitards in California alluvial basins. Instead, due to the complexity of alluvial environments, it is the cumulative effect of multiple thin lenses of fine-grained sediments that causes increasing confinement of groundwater with increasing depth, creating what is often referred to as a semiconfined aquifer.

In some confined aquifers groundwater appears to defy gravity, but that is not the case. When a well penetrates a confined aquifer with a potentiometric surface that is higher than land surface, water will flow naturally to the surface. This is known as artesian flow, and results from pressure within the aquifer. The pressure results when the recharge area for the aquifer is at a higher elevation than the point at which discharge is occurring (Figure 14). The confining layer prevents the groundwater from returning to the surface until the confining layer is penetrated by a well. Artesian flow will discontinue as pressure in the aquifer is reduced and the potentiometric surface drops below the land surface elevation.

# **Groundwater Basin**

A groundwater basin is defined as an alluvial aquifer or a stacked series of alluvial aquifers with reasonably well-defined boundaries in a lateral direction and a definable bottom. Lateral boundaries are features that significantly impede groundwater flow such as rock or sediments with very low permeability or a geologic structure such as a fault. Bottom boundaries would include rock or sediments of very low permeability if no aquifers occur below those sediments within the basin. In some cases, such as in the San Joaquin and Sacramento Valleys, the base of fresh water is considered the bottom of the groundwater basin. Table 8 is a generalized list of basin types and the features that define the basin boundaries.

| Table 8 Types and boundary characteristics of groundwater basins                        |                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Characteristics of groundwater basins                                                   |                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Groundwater basin                                                                       | An aquifer or an aquifer system that is bounded laterally and at depth by one or more of the following features that affect groundwater flow:  • Rocks or sediments of lower permeability  • A geologic structure, such as a fault  • Hydrologic features, such as a stream, lake, ocean, or groundwater divide |  |  |  |
| Types of basins and their boundaries                                                    |                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Single simple basin                                                                     | Basin surrounded on all sides by less permeable rock. Higher permeability near the periphery. Clays near the center. Unconfined around the periphery. Confined near the center. May have artesian flow near the center.                                                                                         |  |  |  |
| Basin open at one or more places to other basins                                        | Many desert basins.  Merged alluvial fans.  Topographic ridges on fans.  Includes some fault-bounded basins.                                                                                                                                                                                                    |  |  |  |
| Basin open to Pacific Ocean                                                             | <ul><li>260 basins along the coast.</li><li>Water-bearing materials extend offshore.</li><li>May be in contact with sea water.</li><li>Vulnerable to seawater intrusion.</li></ul>                                                                                                                              |  |  |  |
| Single complex basin                                                                    | Basin underlain or surrounded by older water-bearing materials and water-bearing volcanics.  Quantification is difficult because of unknown contacts between different rock types within the basin.                                                                                                             |  |  |  |
| Groundwater in areas of volcanic rocks                                                  | Basin concept is less applicable in volcanic rocks.<br>Volcanic rocks are highly variable in permeability.                                                                                                                                                                                                      |  |  |  |
| Groundwater in weathered crystalline rocks (fractured hard rock)—not considered a basin | Small quantities of groundwater. Low yielding wells. Most wells are completed in the crystalline rock and rely on fractures to obtain groundwater.                                                                                                                                                              |  |  |  |
| Political boundaries or management area boundaries                                      | Usually not related to hydrogeologic boundaries. Formed for convenience, usually to manage surface water storage and delivery.                                                                                                                                                                                  |  |  |  |

Although only the upper surface of a groundwater basin can be shown on a map, the basin is threedimensional and includes all subsurface fresh water-bearing material. These boundaries often do not extend straight down, but are dependent on the spatial distribution of geologic materials in the subsurface. In fact, in a few cases near California's coastal areas, aquifers in the subsurface are known to extend beyond the mapped surface of the basin and may actually be exposed under the ocean. Under natural conditions, fresh water flows from these aquifers into the ocean. If groundwater levels are lowered, sea water may flow into the aquifer. This has occurred in Los Angeles, Orange, Ventura, Santa Cruz and Monterey Counties, and some areas around San Francisco Bay. Depiction of a groundwater basin in three dimensions requires extensive subsurface investigation and data evaluation to delineate the basin geometry. Figure 15 is a crosssection showing how a coastal basin might appear in the subsurface.

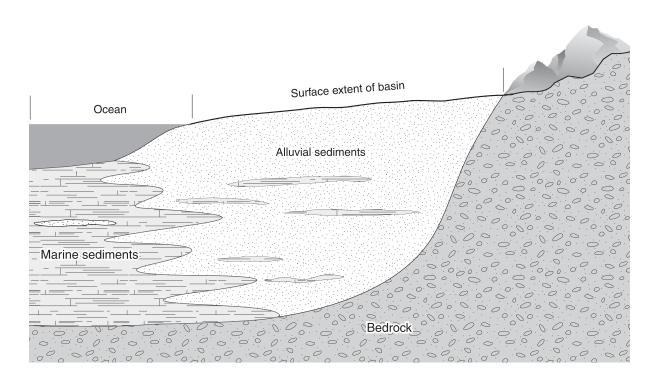



Figure 15 Groundwater basin near the coast with the aguifer extending beyond the surface basin boundary

Groundwater basin and subbasin boundaries shown on the map included with this bulletin are based on evaluation of the best available information. In basins where many studies have been completed and the basin has been operated for a number of years, the basin response is fairly well understood and the boundaries are fairly well defined. Even in these basins, however, there are many unknowns and changes in boundaries may result as more information about the basin is collected and evaluated. In many other basins where much less is known and understood about the basin, boundaries will probably change as a better understanding of the basin is developed. A procedure for collecting information from all the stakeholders should be developed for use statewide so that agreement on basin boundaries can be achieved.

#### **Groundwater Subbasin**

A subbasin is created by dividing a groundwater basin into smaller units using geologic and hydrologic barriers or, more commonly, institutional boundaries (see Table 8). These subbasins are created for the purpose of collecting and analyzing data, managing water resources, and managing adjudicated basins. As the definition implies, the designation of a subbasin boundary is flexible and could change in the future. The limiting rule for a subbasin is that it should not cross over a groundwater basin boundary.

An example of a hydrologic subbasin boundary would be a river or stream that creates a groundwater divide. While hydrologic boundaries may limit groundwater flow in the shallow subsurface, data indicate significant groundwater flow may occur across the boundary at greater depths. In addition, the location of the boundary may change over time if pumping or recharge patterns change. Institutional subbasin boundaries could be based on a political boundary, such as a county line or a water agency service area, or a legally mandated boundary such as a court adjudicated basin.

#### **Groundwater Source Areas**

Groundwater in California is also found outside of alluvial groundwater basins. Igneous extrusive (volcanic), igneous intrusive, metamorphic, and sedimentary rocks are all potential sources of groundwater. These rocks often supply enough water for domestic use, but in some cases can also yield substantial quantities. In this report the term groundwater source area is used for rocks that are significant in terms of being a local groundwater source, but do not fit the category of basin or subbasin. The term is not intended to imply that groundwater actually originates in these rocks, but that it is withdrawn from rocks underlying a generally definable area. Because of the increased difficulty in defining and understanding the hydrogeologic properties of these rocks, the limited data available for the areas in which these rocks occur, and the relatively small, though rapidly growing, segment of the population served by these water supplies, they are discussed separately from groundwater basins.

#### **Volcanics**

Groundwater in volcanics can occur in fractures that result from cooling or changes in stress in the crust of the Earth, lava tubes, tree molds, weathering surfaces, and porous tuff beds. Additionally, the volcanics could overlie other deposits from an alluvial environment. Flow in the fractures may approach the same velocities as that of surface water, but there is often very limited storage potential for groundwater. The tuff beds can act similarly to alluvial aquifers.

Some of the most productive volcanic rocks in the State include the Modoc Plateau volcanics in the northeast and the Napa-Sonoma volcanics northeast of San Francisco Bay (Figure 16). Wells in Modoc Plateau volcanics are commonly reported to yield between 100 and 1,000 gallons per minute, with some yields of 4,000 gpm (Planert and Williams 1995). Bulletin 118-75 assigned identification numbers to these volcanic rocks throughout the State (for example, Modoc Plateau Recent Volcanic Areas, 1-23). The numbers led some to interpret them as being groundwater basins. In this update, the numbers corresponding to the volcanics are being retired to eliminate this confusion.



Figure 16 Significant volcanic groundwater source areas

# Igneous Intrusive, Metamorphic, and Sedimentary Rocks

Groundwater in igneous intrusive, metamorphic, and consolidated sedimentary rocks occurs in fractures resulting from tectonism and expansion of the rock as overburden pressures are relieved. Groundwater is extracted from fractured rock in many of the mountainous areas of the State, such as the Sierra Nevada, the Peninsular Range, and the Coast Ranges. Rocks in these areas often yield only enough supply for individual domestic wells, stock water wells, or small community water systems. Availability of groundwater in such formations can vary widely, even over a distance of a few yards. Areas of groundwater production from consolidated rocks were not defined in previous versions of Bulletin 118 and are not included in this update.

As population grows in areas underlain by these rocks, such as the foothills of the Sierra Nevada and southern California mountains, many new wells are being built in fractured rock. However, groundwater data are often insufficient to accurately estimate the long term reliability of groundwater supplies in these areas. Additional investigation, data evaluation, and management will be needed to ensure future sustainable supplies. The Legislature recognized both the complexity of these areas and the need for management in SB 1938 (2002), which amended the Water Code to require groundwater management plans with specific components be adopted for agencies to be eligible for certain funding administered by DWR for construction of groundwater projects. Water Code section 10753.7(a)(5) states:

Local agencies that are located in areas outside the groundwater basins delineated on the latest edition of the department's groundwater basin and subbasin map shall prepare groundwater management plans incorporating the components in this subdivision, and shall use geologic and hydrologic principles appropriate to those areas.

In carbonate sedimentary rocks such as limestone, groundwater occurs in fractures and cavities formed as a result of dissolution of the rock. Flow in the largest fractures may approach the velocities of surface water, but where these rocks occur in California there is limited storage potential for groundwater. Carbonate rocks occur mostly in Inyo County near the Nevada border (USGS 1995), in the Sierra Nevada foothills, and in some parts of the Sacramento River drainage north of Redding. The carbonates near the Nevada state border in Inyo County are part of a regional aquifer that extends northeastward into Nevada. Springs in Nevada and in the Death Valley region in California are dependent on groundwater flow in this regional aquifer. In other parts of the country, such as Florida, carbonate rocks constitute significant sources of groundwater.

# Movement of Groundwater

The movement of groundwater in the subsurface is quite complex, but in simple terms it can be described as being driven by potential energy. At any point in the saturated subsurface, groundwater has a hydraulic head value that describes its potential energy, which is the combination of its elevation and pressure. In an unconfined aquifer, the water table elevation represents the hydraulic head, while in a confined aquifer the potentiometric surface represents the hydraulic head (Figure 14). Water moves in response to the difference in hydraulic head from the point of highest energy toward the lowest. On a regional scale this results in flow of groundwater from recharge areas to discharge areas. In California, pumping depressions around extraction wells often create the discharge points to which groundwater flows. Groundwater may naturally exit the subsurface by flowing into a stream, lake, or ocean, by flowing to the surface as a spring or seep, or by being transpired by plants.

The rate at which groundwater flows is dependent on the hydraulic conductivity and the rate of change of hydraulic head over some distance. In the mid-19th century, Henry Darcy found through his experiments on sand filters that the amount of flow through a porous medium is directly proportional to the difference

between hydraulic head values and inversely proportional to the horizontal distance between them (Fetter 1988). His conclusions extend to flow through aquifer materials. The difference between hydraulic heads divided by the distance between them is referred to as the hydraulic gradient. When combined with the hydraulic conductivity of the porous medium and the cross-sectional area through which the groundwater flows, Darcy's law states:

Q = KA(dh/dl) (volume/time)

Where:

Q = flow discharging through a porous medium

K = hydraulic conductivity (length/time)

A = cross-sectional area (length<sup>2</sup>)

dh = change in hydraulic head between two points (length)

dl = distance between two points (length)

This version of Darcy's law provides a volumetric flow rate. To calculate the average linear velocity at which the water flows, the result is divided by the effective porosity. The rate of movement of groundwater is very slow, usually less than 1,000 feet per year because of the great amount of friction resulting from movement through the spaces between grains of sand and gravel.

# **Quantity of Groundwater**

Because groundwater is a precious resource, the questions of how much there is and how more can be made available are important. There are many terms and concepts associated with the quantity of groundwater available in a basin, and some controversy surrounding their definition. Some of these include groundwater storage capacity, usable storage capacity, groundwater budget, change in storage, overdraft, and safe yield. This section discusses some of the more common terms used to represent groundwater quantity in California.

#### **Groundwater Storage Capacity**

The groundwater storage capacity of an individual basin or within the entire State is one of the questions most frequently asked by private citizens, water resource planners, and politicians alike. Total storage capacity seems easy to understand. It can be seen as how much physical space is available for storing groundwater. The computation of groundwater storage capacity is quite simple if data are available: capacity is determined by multiplying the total volume of a basin by the average specific yield. The total storage capacity is constant and is dependent on the geometry and hydrogeologic characteristics of the aquifer(s) (Figure 17).

Estimates of total groundwater storage capacity in California are staggering. Previous estimates of total storage range from 850 million acre-feet (maf) to 1.3 billion acre-feet (DWR 1975, DWR 1994). However, due to incomplete information about many of the groundwater basins, there has never been an accurately quantified calculation of total storage capacity statewide. Even if such a calculation were possible, the utility of such a number is questionable because total storage capacity might lead to overly optimistic estimates of how much additional groundwater development can contribute to meeting future demands.

Total groundwater storage capacity is misleading because it only takes into account one aspect of the physical character of the basin. Many other factors limit the ultimate development potential of a groundwater basin. These limiting factors may be physical, chemical, economic, environmental, legal, and institutional (Table 9). Some of these factors, such as the economic and institutional ones, can change with time. However, there may remain significant physical and chemical constraints that will limit groundwater development.

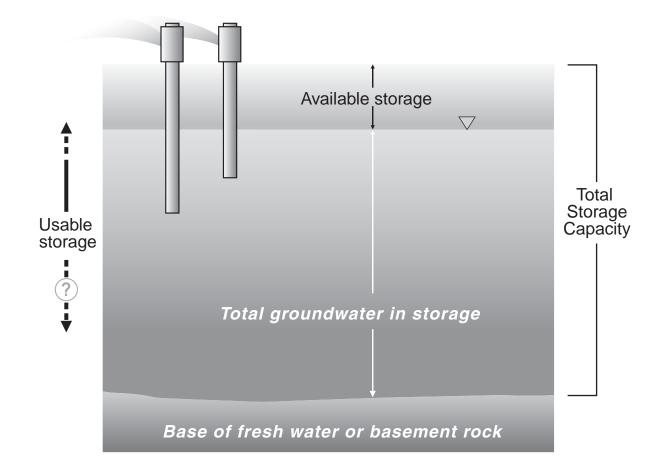



Figure 17 Schematic of total, usable, and available groundwater storage capacity

Table 9 Examples of factors that limit development of a groundwater basin

| Limiting factor | Examples                                                                                                                                                              |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical        | Basin recharge area not adequate to sustain development; pumping too concentrated in a portion of basin; well yields too low for intended use.                        |
| Quality         | Water quality not suitable for intended use; increased potential for seawater intrusion in coastal areas; upwelling of poorer quality water in deeper parts of basin. |
| Economic        | Excessive costs associated with increased pump lifts and deepening of wells; cost of treating water if it does meet requirements for intended use.                    |
| Environmental   | Need to maintain groundwater levels for wetlands, stream base flow, or other habitat.                                                                                 |
| Institutional   | Local groundwater management plans or ordinances restricting use; basin adjudication; impacts on surface water rights of others.                                      |

# **Usable Groundwater Storage Capacity**

Usable storage capacity is defined as the amount of groundwater of suitable quality that can be economically withdrawn from storage. It is typically computed as the product of the volume of the basin to some basinspecific depth that is considered economically available and the average specific yield of the basin (see Figure 17).

As more groundwater is extracted, groundwater levels may fall below some existing wells, which may then require replacement or deepening. This may be a consideration in management of the basin and will depend on the cost of replacement, the cost of pumping the water from deeper zones, and whether managers are willing to pay that cost. Other impacts that may increase the cost include subsidence and groundwater quality degradation. The usable storage may change because of changes in economic conditions.

Estimates of usable storage represent only the total volume of groundwater assumed to be usable in storage, not what would be available for sustained use on an annual basis. Previous estimates of usable groundwater storage capacity range from 143 to 450 maf (DWR 1975, DWR 1994). Unfortunately, the term "usable storage" is often used to indicate the amount of water that can be used from a basin as a source of long-term annual supply. However, the many limitations associated with total groundwater storage capacity discussed above may also apply to usable storage.

# **Available Groundwater Storage Capacity**

Available storage capacity is defined as the volume of a basin that is unsaturated and capable of storing additional groundwater. It is typically computed as the product of the empty volume of the basin and the average specific yield of the unsaturated part of the basin (see Figure 17). The available storage capacity does not include the uppermost portion of the unsaturated zone in which saturation could cause problems such as crop root damage or increased liquefaction potential. The available storage will vary depending on the amount of groundwater taken out of storage and the recharge. The total groundwater in storage will change inversely as the available storage changes.

Available storage has often been used as a number to represent the potential for additional yield from a particular basin. Unfortunately, many of the limitations that exist in developing existing supply discussed above also limit taking advantage of available storage. Although limitations exist, looking only at available groundwater storage capacity may underestimate the potential for groundwater development. Opportunities to use groundwater already in storage and create additional storage space would be overlooked by this approach.

#### **Groundwater Budget**

A groundwater budget is an analysis of a groundwater basin's inflows and outflows to determine the change in groundwater storage. Alternatively, if the change in storage is known, the value of one of the inflows or outflows could be determined. The basic equation can be expressed as:

#### INFLOWS – OUTFLOWS = CHANGE IN STORAGE

Typical inflows include:

- natural recharge from precipitation;
- seepage from surface water channels;
- intentional recharge via ponds, ditches, and injection wells;
- net recharge of applied water for agricultural and other irrigation uses;
- unintentional recharge from leaky conveyance pipelines; and
- subsurface inflows from outside basin boundaries.

#### Outflows include:

- groundwater extraction by wells;
- groundwater discharge to surface water bodies and springs;
- evapotranspiration; and
- subsurface outflow across basin or subbasin boundaries.

Groundwater budgets can be useful tools to understand a basin, but detailed budgets are not available for most groundwater basins in California. A detailed knowledge of each budget component is necessary to obtain a good approximation of the change in storage. Absence or inaccuracy of one or more parameters can lead to an analysis that varies widely from a positive to a negative change in storage or vice versa. Since much of the data needed requires subsurface exploration and monitoring over a series of years, the collection of detailed field data is time-consuming and expensive. A management plan should develop a monitoring program as soon as possible.

# Change in Groundwater Storage

As stated above, a groundwater budget is one potential way of estimating the change in storage in a basin, although it is limited by the accuracy and availability of data. There is a simpler way—by determining the average change in groundwater elevation over the basin, multiplied by the area overlying the basin and the average specific yield (or storativity in the case of a confined aquifer). The time interval over which the groundwater elevation change is determined is study specific, but annual spring-to-spring changes are commonly used. A change in storage calculation does not attempt to determine the volume of water in storage at any time interval, but rather the change from a previous period or baseline condition.

A change in storage calculation is a relatively quick way to represent trends in a basin over time. If change in storage is negligible over a representative period, the basin is in equilibrium under current use. Changes in storage calculations are more often available for a groundwater basin than groundwater budgets because water level measurements are available in many basins. Specific yield and storativity are readily estimated based on knowledge of the hydrogeologic setting and geologic materials or through aquifer pumping tests. Although simple, change in storage calculations have potential sources of error, so it is important to treat change in storage as just one of many tools in determining conditions in a groundwater basin. Well data sets must be carefully evaluated before use in these calculations. Mixing of wells constructed in confined and unconfined portions of the basin and measurement of different well sets over time can result in significant errors.

Although the change in storage calculation is a relatively quick and inexpensive method of observing changes in the groundwater system, the full groundwater budget is preferable. A detailed budget describes an understanding of the physical processes affecting storage in the basin, which the simple change in storage calculation does not. For example, the budget takes into account the relationship between the surface water and the groundwater system. If additional groundwater extraction induced additional infiltration of surface water, the calculated change in storage could be minimal. However, if the surface water is used as a source of supply downstream, the impact of reduced flows could be significant.

#### Overdraft

Groundwater overdraft is defined as the condition of a groundwater basin or subbasin in which the amount of water withdrawn by pumping exceeds the amount of water that recharges the basin over a period of years, during which the water supply conditions approximate average conditions (DWR 1998). Overdraft can be characterized by groundwater levels that decline over a period of years and never fully recover, even in wet years. If overdraft continues for a number of years, significant adverse impacts may occur, including increased extraction costs, costs of well deepening or replacement, land subsidence, water quality degradation, and environmental impacts.

Despite its common usage, the term overdraft has been the subject of debate for many years. Groundwater management is a local responsibility, therefore, the decision whether a basin is in a condition of overdraft is the responsibility of the local groundwater or water management agency. In some cases local agencies may choose to deliberately extract groundwater in excess of recharge in a basin (known as "groundwater mining") as part of an overall management strategy. An independent analysis of water levels in such a basin might conclude that the basin is in overdraft. In other cases, where basin management is less active or nonexistent, declining groundwater levels are not considered a problem until levels drop below the depth of many wells in the basin. As a result, overdraft may not be reported for many years after the condition began.

Water quality changes and subsidence may also indicate that a basin has been overdrafted. For example, when groundwater levels decline in coastal aquifers, seawater fills the pore spaces in the aquifer that are vacated by the groundwater, indicating that the basin is being overdrafted. Overdraft has historically led to as much as 30 feet of land subsidence in one area of the State and lesser amounts in other areas.

The word "overdraft" has been used to designate two unrelated types of water shortages. The first is "historical overdraft" similar to the type illustrated in Figure 18, which shows that ground water levels began to decline in the mid 1950s and then leveled off in the mid 1980s, indicating less groundwater extraction or more recharge. The second type of shortage is "projected overdraft" as used in the California Water Plan Update (DWR 1998). In reality, this is an estimate of future water shortages based on an assumed management program within the basin, including projected supply and projected demand. If water management practices change in those basins in which a water shortage is projected, the amount of projected shortage will change.

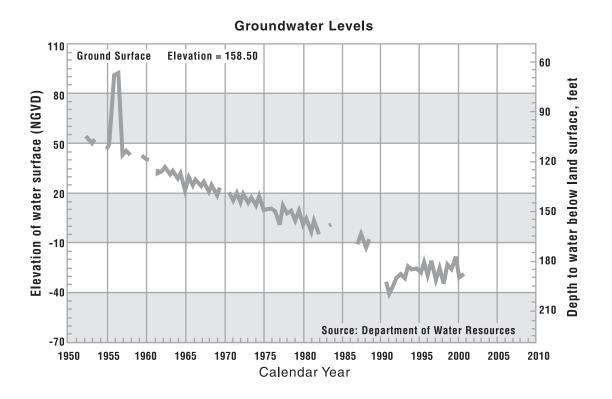



Figure 18 Hydrograph Indicating Overdraft

In some basins or subbasins, groundwater levels declined steadily over a number of years as agricultural or urban use of groundwater increased. In response, managing agencies developed surface water import projects to provide expanded water supplies to alleviate the declining groundwater levels. Increasing groundwater levels, or refilling of the aquifer, demonstrate the effectiveness of this approach in long-term water supply planning. In some areas of the State, the past overdraft is now being used to advantage. When the groundwater storage capacity that is created through historical overdraft is used in coordination with surface water supplies in a conjunctive management program, local and regional water supplies can be augmented.

In 1978 DWR was directed by the legislature to develop a definition of critical overdraft and to identify basins that were in a condition of critical overdraft (Water Code § 12924). The process that was followed and the basins that were deemed to be in a condition of critical overdraft are discussed in Box O, "Critical Conditions of Overdraft." This update to Bulletin 118 did not include similar direction from the legislature, nor funding to undertake evaluation of the State's groundwater basins to determine whether they are in a state of overdraft.

#### Box O Critical Conditions of Overdraft

In 1978 DWR was directed by the legislature to develop a definition of critical overdraft and to identify those basins in a critical condition of overdraft (Water Code §12924). DWR held public workshops around the state to obtain public and water managers' input on what the definition should include, and which basins were critically overdrafted. Bulletin 118-80, *Ground Water Basins in California* was published in 1980 with the results of that local input. The definition of critical overdraft is:

A basin is subject to critical conditions of overdraft when continuation of present water management practices would probably result in significant adverse overdraft-related environmental, social, or economic impacts.

No time is specified in the definition. Definition of the time frame is the responsibility of the local water managers, as is the definition of significant adverse impacts, which would be related to the local agency's management objectives.

Eleven basins were identified as being in a critical condition of overdraft. They are:

Pajaro Basin Cuyama Valley Basin

Ventura Central Basin Eastern San Joaquin County Basin

Chowchilla Basin Madera Basin
Kings Basin Kaweah Basin
Tulare Lake Basin Tule Basin

Kern County Basin

The task was not identified by the Legislature, nor was the funding for this update (2003) sufficient to consult with local water managers and fully re-evaluate the conditions of the 11 critically overdrafted basins. Funding and duration were not sufficient to evaluate additional basins with respect to conditions of critical overdraft.

If a basin lacks existing information, the cost of a thorough evaluation of overdraft conditions in a single basin could exceed \$1 million. In this update of Bulletin 118, DWR has included groundwater budget information for each basin description, where available. In most cases, however, sufficient quantitative information is not available, so conditions of overdraft or critical overdraft were not reported.

While this bulletin does not specifically identify overdrafted basins (other than the 11 basins from Bulletin 118-80), the negative effects of overdraft are occurring or may occur in the future in many basins throughout the State. Declining water levels, diminishing water quality, and subsidence threaten the availability of groundwater to meet current and future demands. A thorough understanding of overdraft can help local groundwater managers minimize the impacts and take advantage of the opportunity created by available groundwater storage capacity. Local groundwater managers and DWR should seek funding and work cooperatively to evaluate the groundwater basins of the State with respect to overdraft and its potential impacts. Beginning with the most heavily used basins and relying to the extent possible on available data collected by DWR and through local groundwater management programs, current or projected conditions of critical overdraft should be identified. If local agencies take the lead in collecting and analyzing data to fully understand groundwater basin conditions, DWR can use the information to update the designations of critically overdrafted basins. This can be a cost effective approach since much of the data needed to update the overdraft designations are the same data that agencies need to effectively manage groundwater.

#### Safe Yield

Safe yield is defined as the amount of groundwater that can be continuously withdrawn from a basin without adverse impact. Safe yield is commonly expressed in terms of acre-feet per year. Depending on how it is applied, safe yield may be an annual average value, or may be calculated based on changed conditions each year. Although safe yield may be indicated by stable groundwater levels measured over a period of years, a detailed groundwater budget is needed to accurately estimate safe yield. Safe yield has commonly been determined in groundwater basin adjudications.

Proper application of the safe yield concept requires that the value be modified through time to reflect changing practices within the basin. One of the common misconceptions is that safe yield is a static number. That is, once it has been calculated, the amount of water can be extracted annually from the basin without any adverse impacts. An example of a situation in which this assumption could be problematic is when land use changes. In some areas, where urban development has replaced agriculture, surface pavement, storm drains, and sewers have increased runoff and dramatically reduced recharge into the basin. If extraction continued at the predetermined safe yield of the basin, water level decline and other negative impacts could occur.



Figure 19 Photograph of extensometer

An extensometer is a well with a concrete bench mark at the bottom. A pipe extends from the concrete to the land surface. If compaction of the finer sediments occurs, leading to land surface subsidence, the pipe in the well will appear to rise out of the well casing. When this movement is recorded, the data show how much the land surface has subsided.

#### **Subsidence**

When groundwater is extracted from some aquifers in sufficient quantity, compaction of the fine-grained sediments can cause subsidence of the land surface. As the groundwater level is lowered, water pressure decreases and more of the weight of the overlying sediments is supported by the sediment grains within the aquifer. If these sediments have not previously been surcharged with an equivalent load, the overlying load will compact them. Compaction decreases the porosity of the sediments and decreases the overall volume of the finer grain sediments, leading to subsidence at the land surface. While the finer sediments within the aquifer system are compacted, the usable storage capacity of the aquifer is not greatly decreased.

Data from extensometers (Figure 19) show that as groundwater levels decline in an aquifer, the land surface falls slightly. As groundwater levels rise, the land surface also rises to its original position. This component of subsidence is called elastic subsidence because it recovers. Inelastic subsidence, the second component of subsidence, is what occurs when groundwater levels decline to the point that the finer sediments are compacted. This compaction is not recoverable.

# **Conjunctive Management**

Conjunctive management in its broadest definition is the coordinated and combined use of surface water and groundwater to increase the overall water supply of a region and improve the reliability of that supply. Conjunctive management may be implemented to meet other objectives as well, including reducing groundwater overdraft and land subsidence, protecting water quality, and improving environmental conditions. Although surface water and groundwater are sometimes considered to be separate resources, they are connected in the hydrologic cycle. By using or storing additional surface water when it is plentiful, and relying more heavily on groundwater during dry periods, conjunctive management can change the timing and location of water so it can be used more efficiently.

Although a specific project or program may be extremely complex, there are several components common to conjunctive management projects. The first is to recharge surplus surface water when it is available to increase groundwater in storage. Recharge may occur through surface spreading, by injection wells, or by reducing groundwater use by substituting surface water. The surplus surface water used for recharge may be local runoff, imported water, stored surface water, or recycled water. The second component is to reduce surface water use in dry years or dry seasons by switching to groundwater. This use of the stored groundwater may take place through direct extraction and use, pumping back to a conveyance facility, or through exchange of another water supply. A final component that should be included is an ongoing monitoring program to evaluate operations and allow water managers to respond to changes in groundwater, surface water, or environmental conditions that could violate management objectives or impact other water users.

# **Quality of Groundwater**

All water contains dissolved constituents. Even rainwater, often described as being naturally pure, contains measurable dissolved minerals and gases. As it moves through the hydrologic cycle, water dissolves and incorporates many constituents. These include naturally occurring and man-made constituents.

Most natural minerals are harmless up to certain levels. In some cases higher mineral content is preferable to consumers for taste. For example, minerals are added to many bottled drinking waters after going through a filtration process. At some level, however, most naturally occurring constituents, along with those introduced by human activities, are considered contaminants. The point at which a given constituent is considered a contaminant varies depending on the intended use of the groundwater and the toxicity level of the constituents.

#### **Beneficial Uses**

For this report, water quality is a measure of the suitability of water for its intended use, with respect to dissolved solids and gases and suspended material. An assessment of water quality should include the investigation of the presence and concentration of any individual constituent that may limit the water's suitability for an intended use.

The SWRCB has identified 23 categories of water uses, referred to as beneficial uses. The beneficial use categories and a brief description of each are presented in Appendix E. The actual criteria that are used to evaluate water quality for each of the beneficial uses are determined by the nine Regional Water Quality Control Boards, resulting in a range of criteria for some of the uses. These criteria are published in each of the Regional Boards' Water Quality Control Plans (Basin Plans)<sup>1</sup>.

A summary of water quality for all of the beneficial uses of groundwater is beyond the scope of this report. Instead, water quality criteria for two of the most common uses—municipal supply (referred to as public drinking water supply in this report) and agricultural supply—are described below.

#### **Public Drinking Water Supply**

Standards for maximum contaminant levels (MCLs) of constituents in drinking water are required under the federal Safe Drinking Water Act of 1974 and its updates. There are primary and secondary standards. Primary standards are developed to protect public health and are legally enforceable. Secondary standards are generally for the protection of aesthetic qualities such as taste, odor, and appearance, and cosmetic qualities, such as skin or tooth discoloration, and are generally non-enforceable guidelines. However, in California secondary standards are legally enforceable for all new drinking water systems and new sources developed by existing public water suppliers (DWR 1997). Under these primary and secondary standards, the U.S. Environmental Protection Agency regulates more than 90 contaminants, and the California Department of Health Services regulates about 100. Federal and State primary MCLs are listed in Appendix F.

# **Agricultural Supply**

An assessment of the suitability of groundwater as a source of agricultural supply is much less straightforward than that for public water supply. An evaluation of water supply suitability for use in agriculture is difficult because the impact of an individual constituent can vary depending on many factors, including soil chemical and physical properties, crop type, drainage, and irrigation method. Elevated levels of constituents usually do not result in an area being taken entirely out of production, but may lower crop yields. Management decisions will determine appropriate land use and irrigation methods.

<sup>&</sup>lt;sup>1</sup> Digital versions of these plans are available online at http://www.swrcb.ca.gov/plnspols/index.html

There are no regulatory standards for water applied on agriculture. Criteria for crop water have been provided as guidelines. Many constituents have the potential to negatively impact agriculture, including more than a dozen trace elements (Ayers and Westcot 1985). Two constituents that are commonly considered with respect to agricultural water quality are salinity—expressed as total dissolved solids (TDS)—and boron concentrations.

Increasing salinity in irrigation water inhibits plant growth by reducing a plant's ability to absorb water through its roots (Pratt and Suarez 1996). While the impact will depend on crop type and soil conditions, it is useful to look at the TDS of the applied water as a general assessment tool. A range of values for TDS with their estimated suitability for agricultural uses is presented in Table 10. These ranges are modified from criteria developed for use in the San Joaquin Valley by the San Joaquin Valley Drainage Program. However, they are similar to values presented in Ayers and Westcot (1985).

Table 10 Range of TDS values with estimated suitability for agricultural uses

| Range of TDS (mg/L) | Suitability                            |  |
|---------------------|----------------------------------------|--|
| <500                | Generally no restrictions on use       |  |
| 500 – 1,250         | Generally slight restrictions on use   |  |
| 1,250 – 2,500       | Generally moderate restrictions on use |  |
| >2,500              | Generally severe restrictions on use   |  |
|                     |                                        |  |

Modified from SJVDP (1990)

TDS = total dissolved solids

High levels of boron can present toxicity problems in plants by damaging leaves. The boron is absorbed through the root system and transported to the leaves. Boron then accumulates during plant transpiration, resulting in leaf burn (Ayers and Westcot 1985). Boron toxicity is highly dependent on a crop's sensitivity to the constituent. A range of values of dissolved boron in irrigation water, with their estimated suitability on various crops is presented in Table 11. These ranges are modified from Ayers and Westcot (1985).

Table 11 Range of boron concentrations with estimated suitability on various crops

| Range of dissolved boron (mg/L) | Suitability                                                 |
|---------------------------------|-------------------------------------------------------------|
| <0.5                            | Suitable on all but most highly boron sensitive crops       |
| 0.5 – 1.0                       | Suitable on most boron sensitive crops                      |
| 1.0 - 2.0                       | Suitable on most moderately boron sensitive crops           |
| >2.0                            | Suitable for only moderately to highly boron tolerant crops |
|                                 |                                                             |

Source: Modified from Ayers and Westcot 1985

#### **Contaminant Groups**

Because there are so many potential individual constituents to evaluate, researchers have often summarized contaminants into groups depending on the purpose of the study. Recognizing that there are exceptions to any classification scheme, this update considered groups according to their common sources of contamination—those naturally occurring and those caused by human activities (anthropogenic). Each of these sources includes more than one contaminant group. A listing of the contaminant groups and the individual constituents belonging to those groups, summarized in this report, is included in Appendix F.

# Naturally Occurring Sources

In this report, naturally occurring sources include three primary groups: (1) inorganic constituents with primary MCLs, (2) inorganic constituents with secondary MCLs, and (3) radiological constituents. Inorganics primarily include naturally occurring minerals such as arsenic or mercury, although human activities may certainly contribute to observed concentrations. Radiological constituents include primarily naturally occurring constituents such as radon, gross alpha, and uranium. Although radioactivity is not considered a significant contaminant statewide, it can be locally important, particularly in communities in the Sierra Nevada.

#### Anthropogenic Sources

Anthropogenic contaminants include pesticides, volatile organic compounds (VOCs), and nitrates. Pesticides and VOCs are often grouped together into an organic contaminant group. However, separating the two gives a general idea of which contaminants are primarily from agricultural activities (pesticides) and which are primarily from industrial activities (VOCs). One notable exception to the groupings is dibromochloropropane (DBCP). Even though this compound is a VOC, DBCP is a soil furnigant and is included with pesticides. Nitrates are a surprising anthropogenic class to some observers. Nitrogen is certainly a naturally occurring inorganic constituent. However, because most nitrates are associated with agriculture (see Box P, "Focused on Nitrates: Detailed Study of a Contaminant") and nitrates are among California's leading contaminants, it is appropriate to consider them separately from inorganics.

#### Box P Focused on Nitrates: Detailed Study of a Contaminant

Because water has so many potential uses, the study of water quality means different things to different people. Thomas Harter, a professor at the University of California at Davis, has chosen to focus on nitrates as one of his research interests. Harter's monitoring network consists of 79 wells on 5 dairies in the San Joaquin Valley.

A common result of dairy activities is the release of nitrogen into the surroundings, which changes to nitrate in groundwater. Nitrates are notorious for their role in interfering with oxygen transport in babies, a condition commonly referred to as "blue baby syndrome." Nitrates are also of interest because more public supply wells have been closed due to nitrate contamination than from any other contaminant (Bachman and others 1997).

Harter's study has focused on two primary activities. The first is a meticulous examination of nitrogen at the surface and nitrates in the uppermost 25 feet of the subsurface. This monitoring has been ongoing since 1993, and has shown that a significant amount of nitrate can reach shallow groundwater. The second focus of the study has been to change management practices to reduce the amount of nitrogen available to reach groundwater, along with continued monitoring. This has occurred since 1998. Results of the study are better management practices that significantly reduce the amount of nitrogen available to groundwater. This will help minimize the potential adverse impacts to groundwater quality from nitrates.